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Hydrodynamic characteristics of bodies in channels 

By C. M. LINTON AND D. V. EVANS 

School of Mathematics, University of Bristol, Bristol BS8 lTW, UK 

(Received 15 July 1992) 

The effect of channel walls on the hydrodynamic characteristics of fixed or oscillating 
bodies is discussed using classical linear water wave theory. Particular attention 
is paid to the occurrence of trapped modes persisting local to the fixed body and 
which are manifested in a non-uniqueness of the corresponding forced problem at the 
trapped mode frequency. The general ideas are illustrated by consideration of two 
simple geometries for which semi-analytic solutions are available, namely a circular 
cylinder either partly immersed or extending throughout the water depth, and a thin 
vertical plate parallel to the channel walls which extends throughout the water depth. 
Conclusions are drawn concerning the conditions under which trapped modes may 
exist and their effect on the hydrodynamic characteristics of more general bodies. 

1. Introduction 
Experiments carried out to determine the hydrodynamic characteristics of bodies 

usually need to be carried out in wave tanks even though knowledge of the behaviour 
in the open sea is required. It is thus important to understand both qualitatively and 
quantitatively how the tank walls affect quantities such as the exciting force on a 
fixed body due to an incident wave or the added mass and damping coefficients for 
a body making small simple harmonic oscillations. 

We consider the case of a channel of constant width 2d and constant depth h 
and we assume that the channel is infinitely long. We also assume that the fluid is 
incompressible and that the fluid motion is irrotational. Then the governing equation 
is Laplace’s equation and it is well known that there is a countable set of discrete cut- 
off frequencies with n propagating modes possible when the frequency lies between 
the (n- l)th and the nth cut-off (n 2 1). The possible modes are alternately symmetric 
and antisymmetric about the centreline of the channel. 

There are many important nonlinear aspects to the physical situation when the 
frequency is close to a cut-off value. For example Tulin & Yao (1992) have provided 
systematic data for the phenomenon of the generation of slowly modulated propa- 
gating wave groups at frequencies just below the first cut-off for symmetric modes. 
In this paper however we shall restrict our attention to linear theory. There are 
many situations in which the linear solution provides the dominant contribution to 
the hydrodynamic characteristics and despite being much simpler the nature of the 
linear solutions is still not fully understood. 

A simple geometry that can be used to shed light on the various phenomena 
that can occur with wave-body interactions in a channel is the vertical circular 
cylinder, either extending throughout the depth or truncated. For the circular cylinder 
extending throughout the depth a vast literature exists since the scattering problem 
can be interpreted as a problem in acoustics. Most notable perhaps is the work of 
Twersky (1962), though most of the extensive hydrodynamic interest in the problem 
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was generated by a paper by Spring & Monkmeyer (1975). Recently there has been 
much work on related problems. Thus the method of images has been used by, 
amongst others, Yeung & Sphaier (1989u,b) to solve the radiation problem for all 
modes of motion for a truncated cylinder immersed through the free surface. More 
recently Linton & Evans (1992~)  and McIver & Bennett (1993) have shown how a 
multipole method can lead to simpler and easier to compute forms for the various 
quantities of interest in problems of this type. 

Callan, Linton & Evans (1991) proved that for a vertical cylinder extending through- 
out the depth and placed on the centreline of the channel there exists a discrete mode 
below the first cut-off for the channel, antisymmetric about the centreline, which 
satisfies the condition of zero normal velocity on all solid boundaries and which has 
finite energy. They term such a mode a trapped mode. Evans (1992) proved that such 
antisymmetric trapped modes also exist for a vertical plate on the centreline extending 
all the way to the bottom and Evans, Linton & Ursell (1993) proved that these modes 
are still possible for an off-centre plate even though in this case antisymmetry cannot 
be imposed and propagating modes are possible at all frequencies. 

Each of these problems has an acoustical counterpart and in particular the thin 
plate on the centreline of an acoustic waveguide has been shown experimentally by 
Parker (1966) to exhibit such modes which he terms acoustic resonances. There is also 
evidence for acoustic resonances in the circular cylinder case (Bearman & Graham 
1980, pp. 231-232). A full review of the occurrence of acoustic resonances is given in 
Parker & Stoneman (1989). 

Evans & Linton (1991) used numerical methods based on matched eigenfunction 
expansions to show that such modes exist for vertical cylinders of rectangular cross- 
section whilst Linton & Evans (1992b) have used the numerical solution of integral 
equations to show that such modes exist for a wide class of cross-sections, all 
symmetric about the channel centreline. In all the above cases the body extends 
throughout the fluid depth. Numerical evidence presented in Linton & Evans (1992~) 
suggests that such modes exist for truncated cylinders also. 

These trapped modes are clearly related to the non-uniqueness of an associated 
forcing problem. For example, if we oscillate a cylinder which is placed on the 
centreline in sway at a trapped mode frequency, then since both the solution to the 
sway problem and the trapped mode are antisymmetric about the centreline we can 
add any multiple of the trapped mode to a solution to the sway problem without 
affecting the boundary conditions. 

An illustration as to how this non-uniqueness affects the hydrodynamic coefficients 
of a circular cylinder on the centreline, in sway, together with the effect of the higher 
cut-off frequencies, was given in Linton & Evans (1992a). Their results showed that 
the trapped-mode frequency, which occurs below the first cut-off frequency and hence 
in a region where the damping coefficient is zero, corresponds to a singularity in the 
added mass coefficient. This is in contrast to the behaviour of these coefficients 
near higher cut-off frequencies where both coefficients exhibit spiky but non-singular 
behaviour. 

In this paper we explore these phenomena in greater detail by considering radiation 
problems for different geometrical configurations, concentrating in particular on the 
behaviour of the hydrodynamic coefficients near to the trapped-mode and cut-off 
frequencies, so as to gain a thorough understanding of such problems. 

We begin in $2 by first discussing again the circular cylinder on the centreline 
described in Linton & Evans (1992~)  before solving the problem of the sway motion 
of an off-centre cylinder. This enables conclusions to be drawn concerning the 
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different qualitative behaviour of the hydrodynamic characteristics of full bodies on 
and off the centreline. 

In 93 we consider radiation problems for thin vertical plates aligned with the 
channel walls and show that there are fundamental differences between problems 
involving such thin bodies and the full bodies considered in 92. 

In order to assist in our understanding of these problems we make use of various 
relations which exist between the solutions of scattering and radiation problems for 
bodies in channels. These relations, being an extension of those derived by Srokosz 
(1980) for problems symmetric about the centreline are derived in an Appendix. 

2. Circular cylinders 
In this section we consider the case of a vertical circular cylinder of radius a placed 

in a channel of width 2d and depth h. Axes (x, y, z )  are chosen with x measured along 
the channel, y measured across the channel and z measured vertically upwards. The 
origin of the coordinate system lies on the centreline of the channel in the plane of 
the undisturbed free surface. The cylinder is centred at (x,y) = (O,b), (0 d b < d ,  
0 < a d d - b), and for the most part we will be concerned with cylinders that extend 
throughout the water depth. 

To begin with consider the case when the cylinder is on the centreline of the 
channel, i.e. b = 0. Two recent papers have examined problems with this geometry. In 
the first of these Callan et a/. (1991) proved that trapped modes, modes of oscillation 
at a particular frequency which have finite energy, exist for cylinders of sufficiently 
small radius. Subsequently the scattering problem, together with the surge and sway 
radiation problems, was solved using multipole expansions in Linton & Evans (1992~) 

Callan et al. (1991) proved that for sufficiently small cylinders there is at least one 
discrete wavenumber, given by k = k' < 71/24 at which the homogeneous boundary 
value problem with zero normal velocity on all solid boundaries, 4 = 0 on y = 0, and 
4 + 0 as 1x1 + co, has a non-trivial solution. Computations suggest that there is in 
fact one and only one such wavenumber for all sizes of cylinder 0 < a/d < 1. This 
trapped mode solution is symmetric about x = 0. The condition 4 = 0 on y = 0, 
implying antisymmetry of the fluid motion about y = 0, ensures that no propagating 
waves can exist in the range 0 < 2kd < 71. 

The existence of a trapped mode solution can also be seen from the solution to 
the sway radiation problem given in Linton & Evans (1992~).  This problem is also 
antisymmetric about the centreline of the channel and so again no waves can exist 
below the first cut-off frequency. The symmetry of the problem implies that the added 
mass and damping matrices each have only one non-zero element (M22 and B22) 
which after suitable non-dimensionalization we term p and v respectively. Below the 
first cut-off frequency, equation (A 33), which relates the sway damping coefficient to 
the energy radiated down the channel, implies that v = 0. Typical behaviour of the 
sway added mass in this range is shown in figure 1. Due to the existence of a trapped 
mode at k = k' the sway radiation problem does not have a unique solution at this 
value (since a multiple of the trapped mode can always be added to a solution) and 
this manifests itself as a singularity in the solution. 

Above the first cut-off frequency kd = 71/2 waves are generated and v is no 
longer zero. At freqencies a little below the higher antisymmetric cut-off frequencies 
kd = (n  + 1/2)71, n = 1,2,. . . , the added mass and damping coefficients exhibit spiky 
behaviour as shown in figure 2(a,b) for n = 1. The height of the spike in the damping 
coefficient and the total extent of the added mass spike can be seen to be very nearly 
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FIGURE 1. Sway added mass coefficient, p ,  below the first cut-off frequency, for a cylinder on the 
centreline with a/d = 0.3, a / h  = 0.1. 

equal and this can be explained by the following argument, a brief description of 
which is given in Linton & Evans (1992~). The quantities v and p are the real and 
imaginary parts respectively of a complex force coefficient q(w), say, and a large spike 
can be shown to correspond to a simple pole in the complex frequency plane close to 
the real axis. This pole must lie in the lower half-plane from causality considerations 
(Wehausen 1971). Near this pole, o = coo say, q(w) w A/ (w - wo). Since the real 
w-axis can be defined by the equation 10 - 001 = 10 - wol it follows that as w moves 
along the real axis close to the pole w = wo, 

so that q moves round a circle, centre A(- - coo)-', radius /A(-  - coo)-' 1. If we write 
wo = a - ip, p > 0, then since the damping coefficient, and hence the real part of q, 
must always be greater than or equal to zero (from (A33)), the centre of this circle 
must lie on the positive real axis. Thus we write A = 2ia, CI > 0, and we see that 
v + ip maps out a circle, centred at v = a/P,  with radius a l p .  This is illustrated in 
figure 3. From the diagram it is clear that the total extent of the spikes in the added 
mass and damping coefficients both correspond to the diameter of this circle and are 
thus equal. 

When the cylinder is not on the centreline of the channel, b # 0, the situation 
is fundamentally different. The scattering problem in this case has been solved by 
McIver & Bennett (1993). Here we extend the multipole method described in Linton 
& Evans (1992~). The boundary value problem we wish to solve is given by (A 2)-(A 5) 
together with a body boundary condition which in this case is 
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FIGURE 2. Sway hydrodynamic coefficients, below the second cut-off frequency, for a cylinder on 
the centreline with a / d  = 0.3, a / h  = 0.1. (a) Added mass, p; (b)  damping, v .  

where polar coordinates ( r ,  0) are defined by x = r cos 6, y - b = r sin 0. We also need 
a radiation condition of the form (A 19). 

Unlike the case of the scattering problem the depth variation in radiation problems 
cannot be factored out. We thus define depth eigenfunctions 

I 

f m ( z )  = NL' cos k,(z + h) ,  m = 0,1, . . . , (2.3) 

where 

sin 2kmh 
N m = -  1+- 

2 ( 2kmh 
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FIGURE 3. Path of the complex force coefficient v + ip as w moves along the real axis 
close to the pole o = wg. 

and k, satisfies 

k, tan k,h + K = 0. (2.5) 

Here k,, m 3 1, are real and positive, whilst ko = ik, k real and positive. The functions 
f,(z), each of which satisfies the free-surface and bottom boundary conditions, satisfy 
the orthogonality relations 

Next we define 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

t >  1, 

cos[2n sin-' t], t < l  

cos[(2n + 1) sin-' t], 
i(-l)" sinh[(2n + 1) cosh-' t], 

sin[2n sin-' t], t < l  
-i(-l)n sinh[2n cosh-' t ] ,  

sin[(2n + 1) sin-' t], 

czn(t) = {(-I),, cosh[2ncosh-' t], t > 1, 

t < l  
t > 1, 

t > 1, 

t < l  
t > 1. coshC(2n + 1) cosh-' t], 

With these definitions, M defined by (A 15), and t,, p = 0,. . . , M defined by (A 14), we 
can derive polar coordinate expansions for channel multipoles centred at (x, y )  = (0, b) 
and symmetric about x = 0. We obtain 

(2.12) 
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M - - ~ ~ { c o s [ E ( y - b ) ]  1 

p=o 
2kd 

+(-l)p cos [ E ( y  + b)] } e'ikxfp~2n(tp), x -, fa, (2.13) 
pz 

42n+1,0 = ~ 2 ~ + l ( k r )  sin(2n + i)e + C { ~ j 2 q , 2 n  + 1 ; 0 ) ~ ~ , ( k r )  cos2qe 
q=o 

+E{2q + 1,2n + l;O}Jzq+l(kr) sin(2q + l)d}, (2.14) 

-(-l)psin [ p ( y  + b)] } ek'kX'pc2n+I(tp), x -, fa, (2.15) 2d 
whilst for m 1, 

to 

&n,m = K2n(kmr) cos 2nB + C{E{2q,  2n; m}I,,(k,~) cos 2qd 
q=o 

+E{2q + 1,271; m}lzq+l (kmr) sin(2q + l)d), (2.16) 

42n+l ,m  = K2"+l(kmr)sin(2n+ l)O+ C{E{2q ,2n+  l;m}Z2,(kmr)cos2qO 

(2.17) 

5 

q=o 

+E(2q + 1,2n + 1 ; m}lzq+i (kmr) sin(2q + l)O}, 
where 

(2.18) 
m e-2kyd + cosh 2kyb 

E(2q,2n;0} = -4 abc c2q W 2 n  (0 dt, 2if 71 $ y sinh2kyd 
sinh2kyb 

E(2q + 1,2n;0} = -- abc c2q+l (t)C2n(t) dt, 
71 $ y sinh 2kyd 

sinh2kyb 
2f $ ysinh2kyd 

E{2q,2n + 1;0} = -3 71 abc c2q (t)c2n+1 (t) dt, 

(2.19) 

(2.20) 

(2.21) 
e-2kyd - cosh 2kyb 

y sinh 2kyd 
rn e-2k,dt + cosh 2k,,,bt 

E(2q + 1,2n + 1;0} = -- abc C2q+l (t)C2n+l (t) dt, 4i 71 irn 
/r y sinh 2kmd t c2q (tk2n (4 dt, E{2q,2n;m} = f q  (2.22) 

sinh2kmbt 
y sinh 2kmd t C2q(t)S2n+l(t) dt, E{2q,2n + l ; m }  = 

(2.23) 

(2.24) 

(2.25) 

We write to cc 

.Y, Z )  = ~a C f m ( Z )  C a n , m 4 n , m  (2.26) 

for some unknowns an,m. The boundary condition on the cylinder, (2.2), can be written 

- " = U sin8 c fm(z)Fm, (2.27) 

m=O fl=O 

to 

m=O 
ar 
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where 
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0 -1 sink h 
F f m ( z ) d z = N m Z ~ .  

k m h  
m 

h -h 
(2.28) 

Applying this boundary condition and then using the orthogonality of the depth 
eigenfunctions and the trigonometric functions leads to an infinite set of infinite 
systems of equations: 

x. 

C + ~ { q ,  n ;  m } ~ ~ , m ( a ) / ~ ~ , m ( a ) ~ a n , m  = 8q1Fm/axi,m(a), q,m 3 0, (2.29) 
n=O 

where 

and 

(2.30) 

(2.31) 

The added mass and damping coefficients, non-dimensionalized with respect to the 
mass of fluid displaced by the cylinder are then given, from (A24), by 

2i 
p+ iv  = [a,,, + 11 (kma)Fm] . (2.32) 

m= 1 
ka J ;  (ka)  

We note that since the fluid motion is not antisymmetric about y = 0 there is wave 
radiation at all frequencies. Below the first cut-off, kd = x/2, we now have behaviour 
similar to that near the higher cut-off frequencies in the b = 0 case, with no singularity 
in the added mass, and there do not appear to be any trapped modes. Figure 4(a, b) 
shows that as b/d + 0 the initial spikes in p and v,  computed from (2.32), get higher 
and narrower as well as occurring at smaller values of kd ,  and this corresponds to 
the value of p, introduced in the discussion prior to (2.3), becoming smaller. Thus as 
b/d --+ 0 the pole below the real axis, near to the first cut-off frequency, moves toward 
this axis and when b = 0 it reaches the axis, p = 0, and instead of moving in a circle 
q = v + ip moves up the imaginary axis to p = +a and then returns along this axis 
from p = -a with v = 0 throughout. This provides an explanation for the singular 
behaviour of the sway added mass coefficient in the b = 0 case, below kd = x/2. 

Another quantity which provides insight into the nature of the solutions to these 
problems is the cross-channel exciting force on the cylinder due to an incident plane 
wave. From (A44) we see that this is proportional to the amplitude of the fundamental 
mode that is radiated when the cylinder moves in sway. By symmetry this force is 
zero when b = 0 for all values of kd and so no fundamental mode is radiated. When 
b # 0 results from McIver & Bennett (1993) show that this force is, as one would 
expect, no longer zero and in fact exhibits very spiky behaviour which is directly 
related through (A44) and (A 33) to the damping coefficient. 

We would expect the above conclusions to be valid for truncated cylinders also. 
Radiation and scattering problems for two types of truncated cylinders were consid- 
ered in Linton & Evans (1992~). The analysis required to solve these problems is 
considerably more involved than for the non-truncated case. It is clear from their 
results that for the case of a cylinder immersed through the free surface but only 
extending part way to the bottom, the qualitative behaviour of the hydrodynamic 
quantities is the same as for the non-truncated case, with significant quantitative 
differences only in very long waves or when the draught of the cylinder is very small. 
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FIGURE 4. Sway hydrodynamic coefficients, below the first cut-off frequency, for three off-centre 
cylinders with a / d  = 0.5, a / h  = 0.1. -, b / d  = 0.05; - - - - - ,  b / d  = 0.2; -.-, b / d  = 0.4. 
(a)  Added mass, p ;  (b)  damping, v .  

Computations suggest that a singularity is again present in the sway added mass in 
the range 0 < kd < 71/2 and thus that trapped modes exist for this geometry also. 
As the draught of the cylinder increases up to the total water depth the various 
hydrodynamic quantities tend rapidly and continuously to the non-truncated values, 
the only exception being for the heave motion of a truncated cylinder as there is no 
equivalent problem in the non-truncated case. There is no reason to suppose that 
when b # 0 the effect of such truncation would be any greater. 

For a bottom-mounted cylinder not extending through the free surface some of the 
qualitative features present in the non-truncated case are retained but quantitatively 
the results are very different. Again a trapped mode appears to be present just below 
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the first antisymmetric cut-off and there is spiky behaviour in the hydrodynamic 
characteristics near the relevant cut-off frequencies for each radiation problem. In 
this case however there is no continuous change towards the non-truncated values 
as the height of the cylinder approaches the water depth, due to the fundamental 
difference between a problem where the body intersects the free surface and one 
where it does not. 

Variations in the hydrodynamic characteristics of a vertical circular cylinder ex- 
tending throughout the depth of the fluid as the radius to channel semi-width ratio, 
a / d ,  varies are well documented in the papers cited above. Some general comments 
are appropriate here. One would expect the effects of the channel walls to diminish 
as a / d  becomes small, either for fixed kd or for fixed ka. This is indeed the case for 
the exciting force on the cylinder as results in Linton & Evans (1992~) and McIver 
& Bennett (1993) demonstrate. However work by Thomas (1991) and McIver (1992) 
shows that the influence of the channel walls on the pressure values on the cylinder 
is considerable and their values vary in an unpredictable way and tend only very 
slowly to the open sea values. In the case of the added mass and damping coefficients 
it appears that increasing a / d  decreases the spiky behaviour near to the cut-off fre- 
quencies. This can be explained as follows. The spiky response in the hydrodynamic 
force on the cylinder is due to the fact that in the absence of the cylinder a resonant 
‘sloshing’ mode is possible at each cut-off frequency. The presence of the cylinder 
inhibits this resonant mode and the larger the cylinder the more it can suppress the 
spiky behaviour. 

C .  M. Linton and D. I.: Evans 

3. Plates 
The case of a thin vertical plate aligned with the channel walls gives rise to some very 

different behaviour. For the case of the plate on the centreline extending throughout 
the depth, the existence of trapped modes was suggested, using partly analytical, partly 
numerical arguments, by Evans & Linton (1991) and subsequently proved rigorously 
by Evans (1992) for sufficiently long plates. Much earlier Parker (1966, 1967) had 
demonstrated experimentally the existence of these modes which he called acoustic 
resonances, and had computed their frequencies using a fully numerical method. 
Unaware of this work, in their paper in 1991, Evans & Linton used the method of 
matched eigenfunction expansions to compute the trapped mode wavenumbers and 
their results indicate that a trapped mode symmetric about x = 0 exists for all values 
of a / d  > 0. As a/d  increases more modes are possible, modes antisymmetric and 
symmetric about x = 0 appearing in turn each time a / d  passes through an integer 
value. Thus for n - 1 < a / d  < n (n  k l),  n trapped modes are possible. 

The sway radiation problem for such a body can be solved using the same matched 
eigenfunction method. Since we shall also be interested in plates off the centreline we 
shall first solve this more general problem with b # 0 and then indicate the changes 
required to recover the corresponding results for b = 0. Notice that these radiation 
problems are symmetric about x = 0. Thus we seek to solve the following boundary 
value problem for $(x ,  y, z )  : 

v=4 = 0, x > O , - d  < y  < d , - h  < Z  < 0 ,  

= O  on z = -h, __ a4 
aZ (3.3) 
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(3.4) 

= o  on x = 0. 3 
ax 

We split the fluid region into three parts. Region 1 is (0 < x < a,b c y c 
d,-h < z < 0}, region 2 is (0 < x < a,-d < y < b , - h  < z < 0} and region 3 
is (x > a, -d < y < d ,  -h < z < O}. Writing c = d - b, f = d + b, orthogonal 
cross-channel eigenfunctions suitable for these three regions are, with n = 0 , 1 , .  . . , 

wil’(y) = c! cos(vn(d - y)), v, = nn/c ,  (3.7) 

wff’(y) = f! cos(Pn(d + Y)), 

yf’(y) = c j  cos(ln(d - y)), An = nn/2d. (3.9) 

P n  = n n / f  9 (3.8) 
and 

Let 4 in region i be 4i, i = 1,2,3,  and write 

(3.12) 

where 

f m ( Z )  and k,  are defined by (2.3)-(2.5), and Fm is defined by (2.28). With these 
definitions, (3.1)-(3.6) are all satisfied and the unknown coefficients U!i, i = 1,2 ,3 ,  
can be found by matching 4i and a&/ax across x = a. Writing 

a n m  = (vf + k i ) f ,  B n m  = ( ~ f  + k i ) f ,  Ynm = (1; + k i ) f ,  

(3.13) 

(3.14) 

we obtain 
m 

and 

I 

A, sin Aqc (coth kmc + coth km f ) ,  q,m 2 0. (3.16) €4‘ F m  
2kmdyqm 

-- - 
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Noting that 
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doo = em = 1, drO = era = 0, r > 1, cdOn = -feon, n > 1, 

it can be shown that the q = m = 0 equation is simply 

U$)(l - icot ka) = 0 (3.17) 

and hence 

ug = 0, (3.18) 

showing that no waves of the form exp(ikx) are radiated away from the plate to 
x = co. In fact the m = 0 system of equations from (3.16) reduces to 

and it can be seen that provided 2kd < n this is a real system since yno is real for all 
n > 1. 

Non-dimensional added mass and damping coefficients are then given by 

p+iv  = 
oM + iB 
2poadh 

Results for the b = 0 case can be obtained from the above analysis simply by letting 
b --+ 0 throughout. However the b = 0 problem can be solved in a much simpler 
manner by taking account of the antisymmetry of the problem about y = 0. Thus we 
need only consider the region y > 0 and apply the condition 4 = 0 on y = 0, x > a. 

Region 1 is as before, region 2 no longer exists and region 3 becomes {x > a,O < 
y < d,-h < z < O}. Orthogonal cross-channel eigenfunctions suitable for region 3 
are now 

yL3'(y) = 2f sin((n + $)ny/d), n > 0. (3.21) 

The expansions for 41 and 43 are given by (3.10) and (3.12) as before where now 

Ynm = ((n + i)27c2/d2 + ki). 

Owing to the simplified nature of the geometry we can now proceed in two different 
ways. First we could obtain a system of equations for the unknowns U:: similar to 
(3.16) but we now also have the option of obtaining a system of equations for the 
unknowns U;; and since these are required in the computation of forces on the plate 
this is a more sensible approach. Thus we obtain 

tanh aqma 
q , m  2 0, 

aqmd ' 
(3.22) 

1 
W W 

b,, + ctqm tanh aqma C Y;dqrdnr U:t(l = 6; (-1)'Fm 
r=O 

which, like (3.19), is a real system provided 2kd < 7c. Non-dimensional added mass 
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centreline with a/d  = 3.5, a / h  = 0.5. 
FIGURE 5. Sway added mass coefficient, p, below the first cut-off frequency, for a plate on the 

and damping coefficients are then given by 

(3.23) 
c c l  e:(-l)"q: 

aimad 
n=O 

oM + iB 
2pwadh 

p + i v  = 

m=O 

Note that the antisymmetry of the solution about y = 0 has been used and the 
potential integrated along both sides of the plate. 

Figure 5 shows the non-dimensional added mass coefficient, computed from (3.23), 
for the case of a plate on the centreline with a/d = 3.5, a/h = 0.5, over the range 
0 < 2kd < n. As in the case of the circular cylinder we find that in this range the 
damping coefficient is zero (as it must be since no waves are radiated) and the added 
mass is singular at those values of kd which correspond to trapped mode wavenumbers 
symmetric about x = 0. In the case of figure 5 the method of Evans & Linton (1991) 
gives two symmetric trapped mode wavenumbers at kd/n k: 0.126,0.372. (The 
antisymmetric trapped mode wavenumbers correspond to singularities in the added 
mass for a radiation problem which is itself antisymmetric about x = 0, for example 
a yawing plate with 84/8y = x / a  on y = 0.) Above the first cut-off frequency, 
computations show that the general form of the added mass and damping curves 
is the same as for the circular cylinder case discussed in the previous section, with 
spikes occurring in the hydrodynamic coefficients which can again be explained as a 
consequence of a pole close to the real axis in the complex force coefficient, q(o). 

When b # 0 however, the plate and the circular cylinder give rise to fundamentally 
different behaviour. Thus Evans et al. (1993) have proved that trapped modes exist 
for a plate off the centreline in the range 0 < 2kd < n, wavenumbers for which in 
this case propagating modes would appear to be possible since there is no longer 
a condition of antisymmetry about y = 0. In fact for this problem it is clear that 
exp(+ikx) is an eigenfunction with any k 3 0 the corresponding eigenvalue. For this 
reason these trapped modes are said to be embedded in the continuous spectrum. 
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In all the previous examples trapped modes have given rise to singularities in the 
added mass which, since these are due to a singularity on the real axis in q(w), 
can only occur if the damping coefficient is zero. This follows from the relation 
q(o) = v + ip = 2ia/(o - wo), a real, since if p is singular oo is real and hence v 
vanishes. It can be seen from (3.18) and (A 33) that the damping coefficient is indeed 
zero over the range 0 < 2kd < z since the amplitude of the fundamental radiated 
mode (i.e. exp(iklx1)) is zero for all values of k. 

This remarkably simple result arising quite naturally from the general formulation 
above in terms of eigenfunction expansions should be capable of a simple explanation. 
The simplest way of proving the result is to use the extension of the Haskind relations 
(A44). Since there is no cross-channel exciting force on the thin plate when a plane 
wave is incident on it, it follows, from (A44), that the coefficient multiplying exp(fikx) 
in the far field of the sway radiation problem is zero. 

This result is in fact true in more general problems than simply the sway problem. 
Consider the radiation problem for an off-centre plate parallel to the tank walls with 
the boundary condition = f(x) on y = b, 1x1 < a. Green’s theorem applied to 
4 and another harmonic function y with dy/dy = 0 on y = +d gives 

with SB and S, as in (A27). Taking y = exp(+ikx) we see that d y / d y  = 0 on SB and 
y and d y / d y  are continous across the plate. Thus the integrals along each side of 
the plate cancel out and if 

M 

4 - H ( Z )  C A: Yn(y)efikxtn as x -+ +m, 
n=O 

in the notation of the Appendix, the integrals over S, show that A$ = 0. Thus any 
combination of N vertical plates aligned with the channel walls, moving such that 
d+/dy  = fi(x) on the ith plate, i = 1, ..., N ,  will generate no waves in the range 
0 < 2kd < z. The above arguments suggest that trapped modes exist for any such 
configuration of fixed vertical plates. 

Computations of the added mass coefficient from (3.20) show that as expected, this 
coefficient exhibits singular behaviour at values of kd corresponding to the trapped 
mode wavenumbers as computed by Evans et al. (1993). 

4. Discussion 
Some fairly general conclusions can be drawn from the above results. 
The existence of trapped modes clearly implies the non-uniqueness of certain 

radiation problems since any multiple of the trapped mode can be added to the 
solution without affecting the boundary conditions. This non-uniqueness appears as 
a singularity in the added mass coefficient in a region where the damping coefficient 
is identically zero and this has been explained in terms of a pole of the complex force 
coefficient on the real axis. Thus it appears that trapped modes only exist in a region 
where the damping coefficient is zero. Note that this does not apply to all radiation 
problems: the problem of a heaving truncated cylinder on the centreline has a unique 
solution at the trapped mode frequency for the corresponding fixed body since the 
solution to the heave problem is symmetric about the centreline whereas the trapped 
mode is antisymmetric about this line. 
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Now any body symmetric about the channel centreline moving in sway will produce 
a fluid motion antisymmetric about the centreline so that if 0 < 2kd < 7c no waves 
will be radiated and the damping coefficient will indeed be identically zero over this 
range. In all such cases considered up to now trapped modes have been found (except 
in the case of a vertical plate perpendicular to the channel walls where the body does 
not interfere with the sloshing modes of the tank) and it seems reasonable to suggest 
that trapped modes exist for all such bodies. 

In this paper we have shown that another problem where the damping coefficient 
vanishes over a range of values of kd is that of a swaying vertical plate aligned with 
the channel walls placed anywhere in the channel, or indeed any number of such 
bodies, and this explains why Evans et al. (1993) were able to find trapped modes in 
this case also. 

Since the damping coefficient in sway is related through (A 33) and (A 44) to the 
cross-channel exciting force on the body due to an incident wave from infinity our 
arguments suggest that if this force is zero over a range of frequencies then a trapped 
mode will exist. From symmetry considerations this is always the case for a body 
symmetric about the channel centreline and it is also clearly true for thin vertical 
plates aligned with the channel walls. It seems unlikely that the cross-channel exciting 
force on any body which is not symmetric about the channel centreline will be zero 
over a range of frequencies and so in turn it seems unlikely that trapped modes will 
exist for such bodies. 

C.M.L. is supported by SERC under grant GR/F/83969. 

Appendix. General relations for bodies in channels 
In the linear theory of interactions between water waves and bodies a number of 

general relations exist involving the various hydrodynamic quantities that arise. These 
relations were discovered over a number of years and a systematic derivation for the 
case of a single body in both two and three dimensions is given in Newman (1976). 
Srokosz (1980) extended these results to the case of a vertical cylinder placed on 
the centreline of a channel extending throughout the water depth with the property 
that the cross-section of the cylinder and any body motions are symmetric about the 
centreline. Here we shall derive relations suitable for any body in a channel moving 
in any mode of motion. 

We make the usual assumptions of an incompressible, inviscid fluid and irrota- 
tional motion and we further assume that all motion is time-harmonic with angular 
frequency w. Using linear water-wave theory we can define a velocity potential 

q x ,  Y ,  z ,  t )  = Re{ 4(x, Y ,  z)e-'"'} (A 1) 

which satisfies 
v24 = 0 in the fluid, 

on z = 0, K = w2/g, (A 3) 84 K @ = -  
a2 

- = o  a4 on z = -h, aZ 
and 

= o  on y = +d. - 34 
aY 
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In order to completely specify a boundary value problem for a wave-body interaction 
we must have a body boundary condition and suitable radiation conditions as 
1x1 + 00. 

First we will consider the body boundary condition. The wetted part of the body 
boundary will be denoted by SB. If we restrict our attention to rigid body motions 
then the normal velocity of a point on the body surface can be written 

v(t) = Re{ WI, U2, u3) + (U4, Us, u6) x rl.ne-’uf}, (A 6 )  

where U1, U2, U3 are the components of surge, sway and heave and U4, Us,  u6 are 
the components of roll, pitch and yaw. The vector r = ((x - xo), ( y  - yo), ( z  - zo)) is 
the position vector of the point on the body surface with the origin at (xo,yo,zo),  the 
centre of rotation, and n ZE (nl ,n2,n3)  is the unit outward normal from the body. If 
we define (n4, n5, n6) = r x n then the linearized body boundary condition is 

For a general problem, q5 can be decomposed into an incident potential, 
potential, &, and six radiation potentials, 4i, one for each mode of motion. Thus 

a diffracted 

6 

4 = 41 + 4 D  + C ui+z. (A 8) 
i= 1 

If we write 4s = +I + 4D then 

= o  on SB * 
an 

and 

-=ni ,  i = l ,  ..., 6, on SB. (A 10) 
a4i 
an 

The correct far-field behaviour can be obtained by solving for 4 in the absence of 
a body. Thus if we separate the variables and write 4 ( x , y , z )  = X ( x ) Y ( y ) Z ( z )  we 
obtain 

(A 11) 
where k is the unique positive solution of the dispersion relation k tanh kh = K ,  

Z(Z) = cash k(z + h),  

cos Any,  n even, 
n odd, n = 0,1, .  . . , y ( y )  = yn(y) = {sin Any, 

where An = nn /2d .  Solutions for X are given by 

~ ( x )  = x,(x) = e+ikx*n 

where 

t ,= [ 1 - ( $ ) 2 ] 4  

For the solution to behave like a propagating wave as 1x1 -+ oc, t ,  must be real. We 
define an integer M by 

and then for n = 0, ..., M ,  X, represents a propagating wave. The frequencies 
M n  < 2kd < ( M  + 1)n (A 15) 
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corresponding to 2kd = mn, m a positive integer, are called the cut-off frequencies 
for the channel. 

An incident plane wave from x = -a can thus be written as 

where 
igA cosh k(z + h) 

o cosh kh 
H ( z )  = - 

Here A is the (assumed real) amplitude of the incident 
plane wave from x = +GO can be written as 

= H(z)e-'kx. 

The far-field behaviour of the various potentials 

M 

(bi - ~ ( z )  C &Yn(y)e"kxtn 
n=O 

(A 17) 

wave. Similarly an incident 

that appear in (A8) is then 

as x -+ +_a, (A 19) 

where the coefficients A:, i = 1 , .  . . ,6, R,?, T,c'), i = 1,2, are to be determined. 

Fi(t)  = Re{Xie-iot} where 
The generalized hydrodynamic force on the body in the ith direction is given by 

Xi = -ipo +ni dS. 

This can be written 
6 

Xi = - Uj(-iwMij + B,) (A 23) 
j=1 

where M and B are real matrices (M is the added-mass matrix and B is the damping 
matrix). Thus 

- ioMij + Bij = ipo 4jni dS. (A 24) 

The exciting force in the ith direction on the body due to the scattering potential 4f) 
is 

The starting point for the derivation of general identities involving the above 
quantities is Green's theorem which implies that if y ,  and y 2  are harmonic in a 
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region surrounded by a closed surface S then 

In all the cases that follow w1 and y2  will have zero normal derivative on the walls 
and the bottom of the channel and will satisfy the free-surface boundary condition. 
Thus 

lB+, ( VI 2 - ~ 2 % )  an dS = 0. 

Here S ,  is made up of the two regions (x = fX,-d < y < d,-h < z < 0} and 1x1 
is large enough for the asymptotic forms for the potentials given in (A 19)-(A21) to 
be valid. 

and w2 = 4j. It is straightforward to show that 
the contribution from S,  is zero. We make use of the fact that 

We will begin by taking y1 = 

where c0 = 1 and E ,  = 2 if n 2 1. Using the body boundary condition then gives 

from which it follows that the matrices M and B are symmetric. 

conjugate and we have from (A19) that 
Next we take y1 = 4i and y2 = 6. Here an overbar represents the complex 

fl=O 

Thus 

Now 
Cosh2 k(z  + h) dz = -A g c 

~ ~ c o s h ~ k h  g2 s" -h wk 
where cg = o k - ' ( l  + 2kh/ sinh 2kh) is the group velocity. It follows from (A24) that 

M 

B, = 2pgdcg 1 C,ltn(AiflAjn ++ + A;*). (A 32) 
fl=O 

In particular 
M 

Bii = 2pgdc, c €,'t,(lA;IZ + lAJ2). (A 33) 

If we use scattering potentials instead of radiation potentials in (A27) further 
and y 2  = +f) it is readily seen 

n=O 

results can be obtained. Thus if we take y1 = 
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that the integral over the body surface gives no contribution and the integral over S,  
leads to the simple result 

(A 34) 
Taking y1 = 4:' and y 2  = 4:) leads to a result expressing the conservation of energy. 
First we note that 

Tp = T(2) 
0 -  

__ 

and then (A27) implies that 
M 

n=O 

Similarly it can be shown that 
M c f;1tn(lR;)12 + I T y )  = 1. (A 37) 

n=O 

Note that if M = 0, since T,f)  = T(2)  , w e have I @  = I@)[. 

y2 = 4i - & has zero normal derivative on the body boundary. Also 
Since the numbers ni appearing in (A 10) are real it follows that the potential 

M M 

Using this function together with y1 = &) gives 

With y1 = we obtain 
M 

A; + c ';' tn(Zg2) + A,T,'2') = 0. 
n=O 

These relations, which can be used both for the evaluation of coefficients and for 
numerical accuracy tests, are extensions of the Newman-Bessho relations (Newman 
1976). 

Finally, a relation can be obtained between the exciting force in the ith direction 
due to an incident wave and the amplitude of the radiated wave due to motion in the 
ith mode. Thus if we take y1 = 4i and w2 = 4:) we obtain 

Using (A 9) and (A 25) this can be rearranged to give 



666 C .  M .  Linton and D. K Evans 

Now if we use tp, = d i  and tp2 = 4;'' we obtain 

which when combined with (A42) gives 

Xi:' = -4dpg~,AA& (A 44) 

XAg' = -4dpgc,AA,. (A 45) 

Similarly 

These relations are extensions of the Haskind relations, Haskind (1959). 
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